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ABSTRACT 
 
The Effective Force Test method (EFT) is a relatively new testing technique that has been developed for 
real-time structural testing. In the EFT method the servo-hydraulic actuator drives the test structure under 
force control. The EFT method requires that the full structural mass be present in the test structure. This 
may pose difficulties in the laboratory and raise safety issues. The virtual mass method is proposed in 
this paper, where only part of the structural mass is required in the test structure to perform an EFT while 
the rest of the structural mass is modeled analytically. Due to the implicitness of the acceleration 
response, two different techniques are proposed to update the command force for the actuator. The 
stability and accuracy of these techniques are analyzed and numerical time history analyses of SDOF 
structures under ground motion are conducted to validate the virtual mass method. With proper time step 
sizes, the virtual mass method is shown to have good accuracy when compared with the exact solution. 
 

Introduction 
 
Real-time testing is important to evaluate the performance of innovative systems subjected to dynamic 
loading, especially for those structures with rate-dependent seismic hazard mitigation devices. Numerous 
methods have been developed for conducting real-time testing, including shake table testing [Blondet et 
al. 1988] and the real-time pseudodynamic test method [Nakashima et al. 1992; Darby et al. 1999; Wu et 
al. 2006] in which the test is performed using a servo-hydraulic actuator under displacement control. 
Effective force testing (EFT) [Dimig et al. 1999] is a relatively new technique for real-time testing, for 
which the actuator imposes controlled forces to the test structure.  
 
The excitation forces of a lumped mass structure due to a ground motion depends only on the ground 
acceleration and the structural mass, and are therefore independent of any structural nonlinearity. If the 
servo-hydraulic actuator can apply explicit time varying forces accurately onto the test structure, the 
resulting structural response will be the same as that of the prototype structure subjected to the same 
earthquake. To conduct EFT testing for lumped mass structures, high-quality servo valves and servo 
hydraulic controllers are required to enable accurate hydraulic control. As the structure moves under the 
actuator force, the actuator piston moves with it, which results in changes of the actuator chamber 
volume and the need for additional oil flow to maintain the force. This phenomenon is particularly severe 
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near the natural frequency of lightly damped structures and results in the inability of the actuator to apply 
force. It was found by Dyke et al. (1995) and Alleyne et al. (1998) that this inability is attributed to the 
interaction between the actuator control and the test structure through a “natural velocity feedback” 
phenomenon. Zhao et al. (2005) developed a natural velocity negation scheme to minimize the effect of 
the natural velocity feedback, through which the oil flow due to the piston movement is compensated. 
Experiments (Zhao et al. 2006) on a nonlinear single-degree-of-freedom (SDOF) structure using the EFT 
method showed that with a natural velocity feedback negation the ability for the actuator to apply force 
near the natural frequency of the test structure is improved. A comparison of the EFT method results with 
shaking table test results showed that the EFT method with natural velocity feedback negation is a 
promising method for real-time testing.  
 
One disadvantage of the EFT method is that the full structural mass must be included in the test setup in 
order for the proper inertial force to be developed in the test structure. This may pose difficulties in the 
laboratory and raise safety issues. Chen and Ricles (2006a) proposed a virtual mass method, in which 
only part of the structural mass is included in the test setup, while the rest of the structural mass is 
modeled analytically. Due to the implicitness of the acceleration response, two techniques are proposed 
in this paper for the virtual mass method to update the command forces for the actuators during an EFT 
with virtual mass. Numerical time history analyses of both linear and nonlinear SDOF structures are 
conducted to validate the proposed techniques for the virtual mass method. For the purpose of the 
analysis, the servo-hydraulic system is not considered in this paper. 
 

Formulation of EFT with Virtual Mass for SDOF Structure 
 
For a SDOF structure subject to a ground motion, as shown in Fig. 1(a), the differential equation of 
motion can be written as 
 

)()()()()( tFtxmtrtxctxm g =⋅−=+⋅+⋅ &&&&&  (1) 

 

 
Figure 1. Schematic representation of SDOF  
           structure for an EFT with virtual mass. 
 
To satisfy Eq. 1 for an effective force test, the full structural mass has to be included in the test structure. 
Chen and Ricles [2006a] proposed a virtual mass method as shown in Fig. 1(b) and 1(c). The equation of 
motion for the test structure can be written as 
 

)()()()()()( tPtxmtxmtrtxctxm vge =⋅−⋅−=+⋅+⋅ &&&&&&&  (2) 

where em  and vm  are the test structure mass and the virtual mass, respectively; and )(tP  is the actuator 

where m  and c  are the mass and viscous damping of 
the SDOF structure, respectively; gx&&  is the predefined 

ground acceleration; x&  and x&&  are the velocity and 
acceleration, respectively; )(tF  is the effective force for 
the SDOF structure subjected to the ground motion; and 

)(tr  is the restoring force of the SDOF structure. For 
linear elastic structures, the restoring force can be 
expressed as )()( txktr ⋅= , where k  is the SDOF linear 
elastic stiffness and )(tx  is the displacement response. 
It can be observed that the response of the structure 
subjected to the ground motion is the same as that 
when the effective force )(tF  is applied to the structure. 
Thus, if the servo-hydraulic actuator can apply the 
effective force accurately to the test structure, the 
response is the same for the two test methods. 
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command force applied onto the test structure shown in Fig. 1(b). The sum of em  and vm  is equal to the 
total structural mass m . vm  is equal to m⋅η  and em  is equal to m⋅− )1( η , where η  is referred to as the 
virtual mass ratio in this paper and is a non-negative value between zero and one.  
 
It can be observed from Eq. 2 that when the virtual mass method is used for the EFT method, the 
structural mass in the test structure is em  instead of the full structural mass m , and the command force 
for the actuator is a function of the effective force ( )(txm g&&⋅− ) and the inertial force of the virtual mass 

( )(txmv &&⋅− ) instead of only the predefined effective force ( )(txm g&&⋅− ). It can also be observed that the 

command force )(tP  for the actuator in Eq. 2 is implicit for real-time testing, since )(tP  is dependent on 
the implicit structural response of acceleration. Therefore, Eq. 2 has to be solved either by iteration or by 
using a direct predictor for the acceleration. The temporally discretized form of Eq. 2 can be written as 
 

111111 ++++++ =⋅−⋅−=+⋅+⋅ iivigiiie Pxmxmrxcxm &&&&&&&  (3) 

 
where 1+ix&  and 1+ix&&  are the velocity and acceleration of the SDOF structure at the (i+1)th time step, 
respectively; 1)( +igx&&  is the ground acceleration at the (i+1)th time step; and 1+ir  and 1+iP  are the restoring 

force and the actuator command force for the test structure at the (i+1)th time step, respectively. 
 
To update the command force 1+iP  for the actuator, a direct acceleration predictor is proposed below in 
Eq. 4, where the previous measured test structure acceleration is utilized as a prediction for the current 
step acceleration. 
 

ii xx &&&& =+1
~  (4) 

 
In Eq. (4), 1

~
+ix&&  is the predicted acceleration for the (i+1)th step. The acceleration prediction via Eq. (4) is 

referred to as the direct acceleration predictor. With Eq. 4 the command force 1+iP  for the actuator is 
made available based on the previous measured acceleration, and the actuator can therefore receive the 
force command from the controller continuously. 
 
Another method to update the actuator command force is to apply a fixed number of substep iterations to 
correct the implicit acceleration response, similar to the technique developed by Shing et al. [2002]. This 
technique is referred to herein as fixed number of iterations. In this technique, the time step is divided into 
a fixed number of smaller substeps. The actuator command force 1+iP  in Eq. 3 for each substep is 
updated based on the measured acceleration of the previous substep and the acceleration at the end of 
the time step is made available by an extrapolation technique using the linear elastic stiffness of the 
SDOF structure [Chen 2007].  
 
The command force )1(

1
+

+
k

iP  for the actuator at the (k+1)th substep in the (i+1)th time step is calculated as 
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where n is the total number of fixed substeps; and k is a substep index from 0 to (n-1). )1(

1
~ +

+
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iP  is the 
command force predicted at the end of the time step, and is equal to  
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In Eq. 6, )(

1
k

ix +&&  is the measured acceleration of the test structure for the kth substep under the actuator 

force )(
1
k

iP+ . For the last substep, i.e., 1−= nk , the acceleration )1(
1
−

+
n

ix&&  is extrapolated to achieve the 
acceleration at the end of the (i+1)th time step, where the amount of extrapolated acceleration is: 
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In Eq. 7, )1(

1
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ie  represents the equilibrium error, where this error for the (n-1)th substep is computed as 
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i xmxmPe &&&& . Using Eqs. 6 and 7 at the beginning of the next time step, the force 

command is able to be continuously sent to the actuator without any pauses between time steps. 
 

Stability and Accuracy Analysis of Virtual Mass Method 
 
For the purpose of performing a numerical simulation, an integration algorithm is used to generate the 
acceleration response of the test structure for an effective force test with virtual mass. When the 
Newmark family of integration algorithms is used to model the test structure, the variations of 
displacement and velocity over the time step are defined as [Newmark 1959] 
 

( )[ ] ( ) 1iii1i 1 ++ ⋅Δ⋅+⋅Δ⋅−+= xtxtxx &&&&&& γγ  (8a) 
 

( ) ( ) ( ) ( ) 1i
2

i
2

i1 ][]5.0[ ++ ⋅Δ⋅+⋅Δ⋅−+⋅Δ+= xtxtxtxx ii &&&&& ββ  (8b) 
 
where tΔ  is the time step size, and β and γ are integration parameters. The discrete transfer function for 
the Newmark family of integration algorithms can be written in the following general form [Mugan et al. 
2001; Chen and Ricles 2006b] 
 

( ) ( )
( ) 01
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where )(zX a  is the discrete z-transform of the acceleration response )(tx&& ; and )(zP  is the discrete z-
transform of external excitation )(tP . The coefficients of the discrete transfer function )(zG  for the 
Newmark family of integration algorithms to solve Eq. 3 for a linear elastic SDOF structure are tabulated 
below in Table 1. 
 

Table 1. Coefficients of ( )zG  for the Newmark family of integration algorithms. 

Numerator Denominator 

2n 2 2d 2222 tktcme Δ⋅⋅+Δ⋅⋅+ βγ  

1n  -4 1d ( ) emtctk 4)42(142 2 −−⋅Δ⋅+Δ⋅⋅+− γβγ  

0n 2 0d ( ) emtctk 2)22(122 2 +−⋅Δ⋅+Δ⋅⋅+− γγβ  
 
The temporally discretized equation of motion in Eq. 3 can be revised to incorporate the virtual mass with 
the direct acceleration predictor, whereby 
 

11111 +++++ =⋅−⋅−=+⋅+⋅ iivigiiie Pxmxmrxcxm &&&&&&&  (10) 
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When the direct acceleration predictor is used, a time delay is introduced into the system. The 
corresponding differential equation of motion for Eq. 10 can be written as 
 

)()()()()()( tPttxmtxmtrtxctxm vge =Δ−⋅−⋅−=+⋅+⋅ &&&&&&&  (11) 

 
Kyrychko et al. [2006] analyzed a similar problem for real-time dynamic substructuring of a coupled 
oscillator-pendulum system, and showed that the system in Eq. 11 will become unstable when ev mm > . 
 

 
Figure 2. Block diagram of EFT with virtual mass. 

 
The transfer function for the closed loop system in Fig. 2 can be derived using discrete control theory and 
written in the general form of Eq. 12. The closed loop transfer function reduces to that of the integration 
algorithm when the virtual mass mv is equal to zero. 
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The stability and accuracy of the closed loop discrete transfer function in Eq. 12 can be determined by its 
pole locations. It has been shown by Chen and Ricles [2006b] that the poles of the discrete transfer 
function for an integration algorithm are the same as the eigenvalues of the amplification matrix. If the 
poles are located within or on the unit circle in the discrete z-domain, the spectral radius is less than one, 
and the closed loop system is stable. Otherwise, it is unstable [Ogata 1995]. For the discrete transfer 
function in Eq. 12, two of the poles are complex conjugate poles, which represent the behavior of the 
structure, while the third pole is a spurious root introduced by the direct acceleration predictor method. 
The complex conjugate poles can be written as 
 

)](exp[2,1 itiz ±−⋅Δ⋅=⋅±= ξωεσ  (13) 
 
where the equivalent damping ratio and the equivalent frequency are defined as ( ) tΔ+−= ωεσξ 2/ln 22  

and tΔ= − /)/(tan 1 σεω , respectively.  
 
To select the proper integration algorithm to model the test structure, the stability and accuracy of the 
closed loop transfer function in Eq. 12 are investigated. Figs. 3(a) and 3(b) shows the spectral radii for 

( )zGcl  for the cases of 25.0=η  and 5.0=η  for an undamped test structure. It can be observed that 
using Eq. 4, different integration algorithms show different stability limits of tn Δ⋅ω , where ωn is the SDOF 
natural frequency. For 25.0=η , the Newmark explicit method and the Newmark method with linear 
acceleration show smaller limits of tn Δ⋅ω  than the their original stability limits, while the Newmark 
method with constant acceleration remains stable for values of tn Δ⋅ω  up to 3.5. For 5.0=η , Fig. 3(b) 
shows that only the Newmark method with constant acceleration remains stable. Therefore, the Newmark 
method with constant acceleration is selected to model the test structure for numerical simulation. It can 
further be shown that for 5.0>η  the Newmark method with constant acceleration also will become 
unstable, which indicates that the virtual mass method with the direct acceleration predictor has a 

Eq. 10 can be represented schematically by the 
closed-loop block diagram shown in Fig. 2, 
where the forward transfer function is the 
numerically modeled test structure and the 
feedback loop is the inertial force of the virtual 
mass using the direct acceleration predictor. 
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maximum virtual mass ratio of 0.5. This is the same as the delay differential equation analysis result 
obtained by Kyrychko et al. (2006).  
 
Figs. 3(c) and 3(d) show the equivalent damping and period elongation for the undamped SDOF structure 
with 25.0=η . The equivalent damping in Fig. 3(c) due to the direct acceleration predictor for the 
integration algorithms under consideration is almost the same for values of tn Δ⋅ω  up to 0.4. The period 
elongation is defined as nnPE ωωω /)( −= . It can be observed that the Newmark explicit method shows a 
period shortening, while the Newmark methods with constant and linear acceleration show a period 
elongation. For the values of tn Δ⋅ω  less than 0.4, the difference in the period elongation is less than 2% 
for these integration methods and can be neglected.  
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Figure 3. Stability and accuracy of EFT with virtual mass using Direct Acceleration Predictor, 
undamped structure. 

 
When the technique of a fixed number of substep iterations is used for the EFT method with a virtual 
mass, it can be proven that for a linear elastic structure, the closed loop transfer function in Eq. 12 
reduces to that of the integration algorithm used to model the prototype structure (Chen 2007). When the 
integration algorithm is unconditional stable, the numerical simulation for the EFT with a virtual mass 
using the fixed number of iterations method will be unconditional stable, and the accuracy of the 
numerical simulation will be the same as that of the integration algorithm (Chen 2007). 
 

Numerical Simulation Results 
 
To validate the EFT method with a virtual mass, numerical time history analysis of a SDOF structure 
subjected to a ground motion are performed. The two proposed techniques for acceleration prediction are 
used for updating the command force 1+iP . Different values of the virtual mass ratio η  are considered. 
The N-S component of 1940 Elcentro earthquake is selected as the ground motion and is scaled to have 
a peak value of 0.3g. 
 
The linear elastic SDOF structure is assumed to have a structural mass of kgm 5000= , a damping ratio 
of 02.0=ξ  and a natural frequency of πω 2=n . Based on the above assessment, the acceleration of the 
test structure is simulated with G(z) in Fig. 2 using the Newmark method with constant acceleration for 
the numerical simulation. The time step tΔ  is 0.002 sec. and 0.02 sec. for the direct and fixed substep 
prediction methods, respectively. For the purpose of assessing the EFT method with a virtual mass, the 
numerical simulation results were compared with a solution from the direct integration of Eq. 1 using the 
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Newmark method with constant acceleration. This converged solution via direct integration is referred to 
herein as the exact solution. 
 
Fig. 4(a) shows the comparison of the displacement time history results for the exact solution to the 
simulation results of the EFT method with a virtual mass and a direct acceleration prediction with 25.0=η  
and 50.0=η . It can be observed that the virtual mass method shows good accuracy. A slight 
undershooting occurs in the displacement response, which can be attributed to the numerical damping 
introduced by the direct acceleration predictor. With the increase of the virtual mass ratio η, the numerical 
damping increases and the accuracy of the virtual mass method decreases. 
 
Fig. 4(b) shows the comparison of the displacement time history results for 75.0=η  and 95.0=η  when 
the technique of a fixed number of iterations is used for the acceleration prediction. The number of 
substeps n is 10, whereby the substep size is 0.002 sec. It can be observed that the results are stable 
and show good accuracy when compared with the exact solution. 
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Figure 4. Comparison of EFT with a virtual mass result to exact solution, linear elastic SDOF. 
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Figure 5.  Comparison of command forces of EFT with a virtual mass to exact force, 

                                   linear elastic SDOF.  
 
When the EFT method with a virtual mass is utilized for the testing of a linear elastic structure, the exact 
actuator force for the test structure can be calculated based on Eqs. 1 and 3 as 
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where )(sP  is the Laplace transform of the actuator force )(tP  applied to the test structure based on the 
exact solution for linear elastic structural response.  
 
The exact actuator force )(tP  for a selected virtual mass ratio based on Eq. 14 is referred to as the exact 
force in the following comparison. Figs. 5(a) and 5(b) show the comparison of the actuator force time 
history for the virtual mass ratios of 50.0=η  and 75.0=η , respectively. It can be observed that the 
command forces for the actuators are different for the two values of η. It can be determined from Fig. 5, 
considering that the maximum ground acceleration is 0.3g, that the maximum command force )(tP  for 
the actuator is increased by 50% compared to the maximum excitation force )(tF  for 50.0=η , and 440% 
for 75.0=η . When η increases, the second order term of the numerator in Eq. 14 becomes smaller and 
the resulting actuator command force for the test structure has the high frequency content removed, 
which helps in the force control of the servo-hydraulic actuator. 
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Figure 6. Force-displacement relationship of  

  nonlinear SDOF structure. 
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Figure 7.  Comparison of EFT with a virtual mass and the Direct Acceleration Predictor result to the 

                          exact solution, nonlinear SDOF.  
 
Fig. 7(a) shows the comparison of the exact solution to the numerical results for the EFT method with 

25.0=η  and 5.0=η  using the direct acceleration predictor. Fig. 7(c) shows the hysteresis of the 

A nonlinear SDOF structure is also considered for 
the time history analysis to validate the virtual mass 
method. The force-displacement relationship for the 
SDOF structure is shown in Fig. 6. The nonlinear 
SDOF structure has the same elastic properties as 
the linear elastic SDOF structure described 
previously, with a yield force of kNry 97.1=  and 

yield displacement of my 01.0=Δ . The post yield 

stiffness is assumed to be et kk 2.0= . The exact 
solution is calculated by the direct integration of Eq. 
1 using the Newmark method with constant 
acceleration. 
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nonlinear SDOF structure under the actuator command force for the virtual mass ratio of 5.0=η . Good 
accuracy can be observed when compared with the exact solution shown in Fig. 7(b). 
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Figure 8.  Comparison of EFT with a virtual mass and the Substep Acceleration Predictor result to the 

                     exact solution, nonlinear SDOF.  
 
Fig. 8(a) shows the comparison of the exact solution with the numerical results for the EFT method with 

75.0=η  and 95.0=η  when the technique with a fixed number of iterations is used for updating the 
actuator command force. Fig. 8(c) shows the hysteresis of the nonlinear SDOF structure under the 
excitation force with the virtual mass ratio of 95.0=η . It can be observed that the numerical simulation 
has good accuracy when compared to the exact solution shown in Fig. 8(b). 
 
Using the two proposed techniques to update the command force for the hydraulic actuator, the structural 
mass in the test setup is shown to be reduced by 50% for the direct acceleration predictor method based 
on Eq. 4 and by 95% based on using a fixed number of iterations. The numerical simulation results for the 
linear and nonlinear SDOF structure show that the virtual mass method is reliable and accurate. 
 

Summary and Conclusions 
 
The EFT method is a promising technique for conducting real-time structural testing to evaluate the 
performance of innovative structural systems with seismic hazard mitigation devices. To overcome the 
mass problem in the EFT method, the use of a virtual mass is proposed in this paper, in which only part 
of the structural mass is required in the test setup and the rest of the structural mass is analytically 
modeled. To perform an effective force test with a virtual mass in the laboratory, two techniques are 
proposed to update the command force for the servo-hydraulic actuator. The stability and accuracy of the 
proposed techniques are investigated for linear elastic structures using the discrete transfer function 
approach and indicate a virtual mass ratio limit for the acceleration predictor technique based on directly 
using the acceleration at the end of the prior time step. 
 
With the assumption of perfect hydraulic force control, numerical simulations are performed for both linear 
and nonlinear SDOF structures subjected to ground motions. The virtual mass method using a direct 
acceleration predictor shows good accuracy compared with the exact solution when the virtual mass ratio 
is less than the limit value from the stability analysis. The test structural mass can be reduced by up to 50 
percent. A slight difference in the displacement response is observed which is attributed to the numerical 
damping induced by the acceleration predictor. The technique using a fixed number of iterations to 
predict the acceleration shows a larger limit for the virtual mass ratio. The numerical simulations for both 
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linear and nonlinear SDOF structures show that the EFT with a fixed number of iterations can reduce the 
test structural mass by up to 95% and have good accuracy when compared to the exact solution.  
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